

Dealing with NGS data: Differential Expression

Club Moderators: Elton Vasconcelos and Eilidh Ward

Important steps on NGS data analysis workflow

Software packages for DE analysis

Method	Version	Reference	Normalization ${ }^{\text {a }}$	Read count distribution assumption	Differential expression test
edgeR	3.0.8	[4]	TMM/Upper quartile/RLE (DESeq-like) None (all scaling factors are set to be one)	Negative binomial distribution	Exact test
$\begin{aligned} & \text { DESeq } \\ & \text { baySeq } \end{aligned}$	$\begin{aligned} & 1.10 .1 \\ & \\ & 1.12 .0 \end{aligned}$	$\text { [} \underline{5}]$ $\text { [} \underline{6} \text {] }$	DESeq sizeFactors $\text { Scaling factors (quantile } / \mathrm{TMM} / \text { total) }$	Negative binomial distribution Negative binomial distribution	Exact test \| Assesses the posterior probabilities of models for differentially and non-differentially expressed genes via empirical Bayesian methods and then compares these posterior likelihoods
NOIseq	1.1.4	[7]	RPKM/TMM/Upper quartile	Nonparametric method	Contrasts fold changes and absolute differences within a condition to determine the null distribution and then compares the observed differences to this null
SAMseq (samr)	2.0	[8]	SAMseq specialized method based on the mean read count over the null features of the data set	Nonparametric method	Wilcoxon rank statistic and a resampling strategy
Limma	3.14 .4	[9]	TMM	voom transformation of counts	Empirical Bayes method
Cuffdiff 2 (Cufflinks)	$\begin{aligned} & 2.0 .2- \\ & \text { beta } \end{aligned}$	[10]	Geometric (DESeq-like)/quartile/classic-fpkm	Beta negative binomial distribution	t-test
EBSeq	1.1.7	[11]	DESeq median normalization	Negative binomial distribution	Evaluates the posterior probability of differentially and non-differentially expressed entities (genes or isoforms) via empirical Bayesian methods

${ }^{\mathrm{a}}$ In case of availability of several normalization methods, the default one is underlined.
\rightarrow Important Output Metrics: $\log _{2}(\mathrm{FC}), \mathrm{p}$-value and FDR provided in most output files

The DESeq2 model

- Perform a "median of ratios" normalization to correct for library size and RNA composition bias (counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene);
- Use shrinkage estimation for dispersions and fold changes because small numbers of replicates make it impossible to estimate within-group variance reliably;
- Fit negative binomial generalized linear models for each gene and uses the Wald test for significance testing.

Prepare the data for DESeq2 analysis

countData: a matrix of non-negative integers							
-	normal.rep1 *	normal.rep2	normal.rep3	tumor.rep1	tumor.rep2	tumor.rep3	\%
ENSG00000283047	0	0	0	1	1	0	
ENSG00000283023	1	1	1	0	0	3	
ENSG00000280341	0	0	1	0	1	1	
ENSG00000279442	0	2	0	0	0	0	
ENSG00000237299	0	0	0	3	0	3	
ENSG00000233408	0	0	0	0	0	1	
ENSG00000215268	1	0	1	0	0	0	
ENSG00000230471	0	0	0	0	0	1	
ENSG00000231565	0	0	0	2	1	2	

[^0]colData: a DataFrame with at least a single column. Rows of colData correspond to columns of countData.

	condition
normal.rep1	normal
normal.rep2	normal
normal.rep3	normal
tumor.rep1	tumor
tumor.rep2	tumor
tumor.rep3	tumor

design: a formula expressing the variables which will be used in modelling.

The main three steps of running DESeq2

1. Create a DESeqDataSet object from input. Please note that the colnames of countData must be identical to the rownames of colData.
keep = rowSums(count.data) >= 1
count.data.keep = count.data[keep,])
dds <- DESeqDataSetFromMatrix(countData = count.data.keep, colData = metadata, design $=\sim$ condition)
2. Perform the differential expression analysis.
dds <- DESeq(dds, fitType = "local")
3. Extract a results table.
res <- results(dds, contrast=c("condition", "tumor", "normal"))
write.table(res[order(res\$padj),], file="resultsDESeq2.tsv", sep = "\t", quote=F, col.names=NA)

Bring your issues on!

[^0]: count.data

