

Why use it?

● Reproducibility – Snakefiles can be run in self-contained Conda (Mamba) or Singularity
enviornments and all parameters are fixed, can record logs and version control etc.

● Scalibility – Given the right config files, Snakemake can automatically request optimal
resources to run jobs on a given platform, without the need to modify the workflow.

● Interpretability – Built using extended Pythonic language, so can run standard Python code
alongside Snakemake rules and thus leans on all the benefits of Python.

● Can pause and run jobs in the middle of processing (in theory, see later)

How Does it Work?

● Builds on the concept of GNU Make, for installing packages via the Command-Line.
Workflows are defined as rules that define how to create output files from input files.

● Dependencies determined automatically via matching filenames, creating a DAG (Directed,
Acyclic Graph) of jobs that can be parallelised.

● Filenames are matched between rules via the use of a dictionary-like object of “wildcards”,
or {wildcards}, which contain strings that can be added to to define eg .fastq.gz
files, .bam files, .csv files etc

● Rules contain functions/commands (ie Cutadapt QC reads, HISAT2 align reads etc) written in
the underlying Shell script (ie Bash for Linux).

all

fastqc

salmon_se

salmon_pehisat2_align

htseq_gene_level htseq_transcript_level

cutadapt_se cutadapt_pe

snakemake --forceall --rulegraph | dot -Tsvg > dag.svg

all

fastqc

salmon_se

salmon_pehisat2_align

htseq_gene_level htseq_transcript_level

cutadapt_se cutadapt_pe

“All” rule, ie the ultimate
“Target” rule

snakemake --forceall --rulegraph | dot -Tsvg > dag.svg

Look at Snakefile

How to Use it?

● Recommend using Atom editor, as it recognises Snakefiles

● Can run with the -n flag, which runs Snakemake via a “dry run”, where shell is not run, no
files are generated and no jobs submitted, just tests the syntax and layout of the Snakefile

● Will need a specific script to run on the HPC (ARC4), a “cluster config” fil

● --cores 80 means max 80 cores allocated, split 4 per task (so 20 at once). Will optimise if
spare threads. Can use --resources to allocate other things ie memory/GPU usage etc

● Can overwrite a lot of arguments in the rules from command line, ie definite input files or set
threads with --set-threads my_rule=2

snakemake --profile sge --cluster-config yamls/cluster.yaml --use-conda --rerun-incomplete --cores 80

Tips

● Config files! YAML or JSON, recommend reading into them

● Can use specific Conda yamls, or can just use same Conda env with all require packages & Snakemake intstalled

● I generally have “snakemake” Conda env containing just Snakemake, run from there and using .yamls specifying
Conda envs for different rules

● Mamba! An optimised form of Conda, basically works the same but is multi-threaded and speedier (in theory)

● snakemake --lint will automatically attempt to indicate where the Snakefile can be optimised

● Tutorial online is really helpful and comprehensive!
https://snakemake-wrappers.readthedocs.io/en/stable/index.html

● Multiple published pipelines already exist online, especially for more routine things like RNA-Seq – don’t need to
re-invent the wheel!

https://snakemake-wrappers.readthedocs.io/en/stable/index.html

Problems?

● Can be very fiddly! Making sure all filenames match etc, and error messages can be really
unhelpful and obscure

● While -n option lets you check if the Python/Snakemake script works, doesn’t run or
account for shell scripts, which has to be done manually via checking output logs

● Requires an open internet connection to HPC to run; obviously challenging given WFH and
general instability of connection. If the connection is dropped then the pipeline totally fails
so have to totally re-run, hence my usage of --rerun-incomplete

Thanks!
Any Questions?

Euan McDonnell
bs14e3m@leeds.ac.uk

@EuancRNA

Thanks to Joseph Barker for setting up Snakemake on the HPC and writing the cluster.yml config file

mailto:bs14e3m@leeds.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

